Organic light-emitting diodes with new dyes based on coumarin
Annotation
The results of studying the luminescent properties of organic light-emitting diodes based on new luminescent compounds containing a coumarin fragment are presented. The light-emitting diodes were fabricated by spin-coating and thermal evaporation in an argon atmosphere in a clean room. Measurements of the LED characteristics were carried out by optical spectroscopy, as well as by electrical methods. It has been experimentally shown that deposition of an OLED active layer based on luminescent compounds containing a coumarin core can lead to the formation of dimers, the luminescence spectra of which differ significantly from the corresponding spectra of the original materials in toluene. A variation in the structure of the compound leads to a change in both the current-voltage characteristics of the resulting device and the luminescence spectra. These changes appeared due to the difference in the electronic structure of these materials as well as due to different values of charge carrier mobilities and the potential barriers at the heterointerface with other OLED layers. The results obtained may serve as the basis for systematizing knowledge about the dependence of the properties of new luminescent materials, which include a coumarin core, on their structure. The developed structures can become prototypes for industrially produced light-emitting devices that specifically emit white light.
Keywords
Постоянный URL
Articles in current issue
- Pulse recording of dynamic holograms in bismuth silicate crystal in a broad wavelength range
- Hybrid endoscope with television and multispectral image processing for the internal organs cancer early diagnostics
- Modelling of a composite waveguide holographic display
- Application of infrared spectroscopy methods in studying compositions for paper sizing
- Distribution optimization method of pixel density by surveillance area
- Evaluation and development of a method for compensating the positioning error of computer numeric control equipment
- Compensation of output external disturbances for a class of linear systems with control delay
- Luminescence technique for studying the growth of AgInS2 quantum dots
- Peculiarities of pulsed laser deposition of thin InGaAsN films in an active background gas atmosphere
- Determination of the electron distribution in thin barrier AlGaAs/GaAs superlattices by capacitance-voltage profiling
- Spectral and kinetic properties of silver sulfide quantum dots in an external electric field
- Influence of nano-sized horizontal inhomogeneities on surface profiling by means of XPS
- Fabrication and characterization of hybrid composite of Al6082/SiC/rice husk powder using friction stir processing
- A multi-path secure routing for the detection of node capturing attack in wireless sensor network
- A method for documenting architectural solutions of computing platforms
- Improving out of vocabulary words recognition accuracy for an end-to-end Russian speech recognition system
- Method for monitoring the state of elements of cyber-physical systems based on time series analysis
- Application of the text wave model to the sentiment analysis problem
- Automated evaluation of ECG parameters during the COVID-19 pandemic
- Multi-agent adaptive routing by multi-headattention-based twin agents using reinforcement learning
- Joint learning of agents and graph embeddings in a conveyor belt control problem
- Simulation of radiative transfer in gas-liquid foams
- The effect of signal-to-noise ratio value on the error in measuring acoustic emission parameters: statistical assessment
- Simulating the process of steady-state thermoreflectance for measuring the thermal conductivity of materials
- Modeling and simulation ofone- and two-row six-bladed ducted fans
- Differential-difference model of heat transfer in solids using the method of parametric identification